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DARD: Deceptive Approaches for Robust
Defense Against IP Theft
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Abstract—With the rise of smart working and recent global events, the risk of cyberattacks is increasing steadily. Sometimes
adversaries focus on stealing valuable data, such as intellectual property (IP): they exfiltrate a large volume of IP documents from a
target company. They then identify those of their interest by leveraging automated methods. In this work, we propose the DARD
(Deceptive Approaches for Robust Defense against IP Theft) system, a framework designed to deceive adversaries who rely on
automatic approaches to classify exfiltrated documents. Starting from an original repository of documents, DARD automatically
generates a new deceptive repository that misleads popular automatic approaches, resulting in clusters of documents that are
significantly different from the actual ones. By utilizing this approach, DARD aims to hinder the accurate clustering and the identification
of the topic of documents by adversaries relying on automated techniques. The paper presents four deceptive operations (Basic
Shuffle, Shuffle increment, Shuffle reduction, and Change topic) that DARD leverages to create a deceptive repository. We evaluate the
efficacy of our approach by considering three different types of adversaries, each possessing varying levels of knowledge and
expertise. We show experimentally that the DARD system can deceive both topic modeling and document clustering techniques,
including commercial tools such as Amazon Comprehend. As a result, our solution provides a robust defense mechanism against
Intellectual Property (IP) theft.

Index Terms—Deceptive repository, clustering, topic modeling, adversarial setting.
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1 INTRODUCTION

According to recent cybersecurity reports from sources
such as Deloitte [1] and Interpol [2], there is a noticeable
rise of businesses suffering cyber attacks. This upward
trend can be attributed to several factors, including the
growing number of employees working remotely, which
has become increasingly prevalent since the onset of the
COVID-19 pandemic. Additionally, the outbreak of war in
Ukraine has led to increased threats of cyberattacks against
Western businesses, with reported attacks against European
companies in particular [3]. In 2022, there were many in-
stances of exfiltration attacks, which involved unauthorized
data extraction from targeted systems. The Cybersecurity
and Infrastructure Security Agency (CISA) registered an
exfiltration attack within the Defense Industrial Base orga-
nization [4]. The adversaries infiltrated the organization’s
information system, compromised its network, and illicitly
accessed and stole the organization’s sensitive data. The
press also reports significant thefts of Intellectual Property
(IP) almost daily. The U.S. based cloud solution provider
Blackbaud suffered a data breach that lasted from February
to mid-May 2020, during which cyber criminals allegedly
were able to exfiltrate a huge amount of data. In October
2020, cyber-criminals stole about 1TB of employee informa-
tion and company documents from the German tech firm
Software AG [5]. The Australian Toll Group in 2020 was hit
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by cyber criminals twice in three months, with an alleged
data loss of over 200GB of corporate data [6]. In some cases,
months might pass by before a successful compromise of
an enterprise network is discovered. According to the 2021
Verizon’s report [7], 20% of data breaches that occurred in
2020 were discovered several months after the attack, such
as the SolarWinds cyber attack [8] that remained undetected
for 9 months. Adversaries interested in a company’s infor-
mation could exploit the interval after intrusion and before
detection to exfiltrate large amounts of IP documents from
the company.

Given the vast amount of exfiltrated data, adversaries of-
ten employ a strategy of analyzing their contents to identify
specific documents related to their interests. Using human
domain experts is one option but it is a time-consuming
activity for adversaries. Consequently, as a first step, they
typically select documents related to certain topics of inter-
est through an automated approach to focus their in-depth
analysis only on a few documents. In the final phase, human
domain experts come into play to assess the value of the
few selected documents in terms of IP and the presence
of innovative content. Our adversary model encompasses
a broad range of adversaries, including Wikileaks users
who possess the capability to employ topic modeling and
clustering techniques. These techniques allow them to iden-
tify specific documents of interest within the vast collection
published by Wikileaks, such as those containing highly
sensitive information.

This paper aims to hinder the first phase of the attack. To
achieve this, it proposes the DARD (Deceptive Approaches
for Robust Defense against IP Theft) system. This system
is designed to ensure that adversaries fail in their attempts
to analyze a large repository of exfiltrated documents using



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

automated tools. As a result, adversaries will be left with the
only expensive option of using human domain experts to
examine the entire repository thoroughly. Starting from an
original repository R of documents, DARD automatically
generates a deceptive repository R′. When an automatic
clustering technique analyzes R′, it produces a set of doc-
uments clusters that is far away, in terms of the number
of clusters and of individual documents grouped in each
cluster, from what is actually present in R. Specifically, to
generate such a deceptive repository, this work presents four
deceptive operations. A defender can use these deceptive
operations to implement a defense strategy against IP thefts,
hindering the use of both topic modeling and document
clustering techniques. Regarding topic modeling, defenders
can build a deceptive repository R′ that, when automati-
cally parsed, presents topics of no interest to the adversaries
instead of the original potentially sensitive topics contained
in the documents of R. In this case, the adversaries have
the following options: (1) trust the result found by the au-
tomated process; (2) attempt to reverse the deceptive oper-
ations, obtaining poor results, as shown in this paper; or (3)
use human experts to identify documents of interest within
R′. In the case of document clustering, deceptive operations
can build a new deceptive repository R′ in such a way
that clustering techniques return clusters in which sensitive
documents are distributed. Thus, adversaries interested in
retrieving these sensitive documents cannot exclude any
cluster from their analysis; if they disregard certain clusters
during subsequent analysis, they risk losing identification of
sensitive documents contained in the excluded clusters and
still require human effort to retrieve the sensitive documents
in the remaining clusters. A defender can combine the two
strategies to deceive topic modeling and document cluster-
ing approaches, achieving higher levels of defense against
IP thefts and effectively slowing down the adversaries and
requiring increased effort on their part.

From the point of view of authorized users, DARD
is completely transparent. Indeed, it is possible to store
the mapping of the replaced keywords in the repository’s
documents to reconstruct the original version. However, the
keywords mapping, the most sensitive data of the DARD
system, can not be stored on the conventional file system,
risking being exfiltrated together with the other repository
documents. To address this concern, a secure application
must be developed for file restoration, utilizing a Secure
Enclave Solution [9]. By adopting this approach, the map-
ping can be securely stored within the Secure Memory of
the Secure Enclave. Performing the restore operation on the
Secure CPU ensures that the keywords mapping remains
isolated and safeguarded. The details of the solution are not
addressed as they are out of the scope of this paper.

The contributions of this work include:
• Deceptive operations: We designed and implemented

four deceptive operations (Basic Shuffle, Shuffle incre-
ment, Shuffle reduction, and Change topic) that select
and replace some keywords present in the documents
of the repositoryRwith deceptive keywords. These op-
erations can be used to create a deceptive repositoryR′
that, when automatically parsed, results in a different
number of clusters than those in the repository R and
produces new clusters containing documents initially

belonging to different topics of R.
• Extensive experimentation: The deceptive operations

have been applied to a repository made of real pa-
pers collected through the Arxiv APIs. We evaluate
the performance of three kinds of adversaries on an
experimental repository and show that the adversaries
cluster the documents as planned by the defender.

• Topic modeling and commercial tool evaluation: We
evaluate the possibility of deceiving the adversaries on
the actual topics covered within a deceptive repository.
We find that the first 10 keywords by relevance re-
trieved by topic modeling algorithms in the deceptive
repository are all deceptive keywords. This finding
indicates that defenders can manipulate the topics re-
trieved by adversaries, presenting them with believable
yet fake topics. Furthermore, we test the effectiveness of
DARD against adversaries using commercial tools like
Amazon Comprehend [10] and find that the adversaries
were only able to retrieve deceptive keywords. This
result underlines the effectiveness of the DARD system,
even in the face of adversaries using commercial tools.

2 ANALYSIS OF AN EXFILTRATED REPOSITORY

Assuming that adversaries have managed to exfiltrate a
company’s original repository, the purpose of this section
is to show an example of how such adversaries could
automatically infer the topics covered by each document in
the exfiltrated repository and then select only the documents
they are interested in. For simplicity, here we assume that
the victim company has not adopted deceptive techniques
in document production, and the adversaries are not aware
of any of the topics covered by the documents of the repos-
itory. More powerful attack models will be defined in Sec. 4
and evaluated in the experiments in Sec. 5. This section
assumes that the adversaries will follow the methodology
defined in Sec. 2.2 since it represents the classical approach
for document clustering and topic modeling tasks. Indeed,
this pipeline is also used as a benchmark by other important
proposals for new document clustering and topic modeling
techniques described in the literature [11], [12].

2.1 The Repository

The exfiltrated repository presented in this subsection is also
used in the experiments in Sec. 3, Sec. 4, and Sec. 5. This
repository is a collection of 450 scientific papers, evenly di-
vided into three different topics of computer science: Artifi-
cial Intelligence (AI), Database (DB), and Cryptography and
Security (CR). The repository contains papers retrieved from
ArXiv [13], an open-access archive for scholarly articles.
ArXiv provides APIs1 that allow users to retrieve documents
specifying the domain (Computer Science), and a domain-
related field (namely: Artificial Intelligence, Database, and
Cryptography and Security). The documents in the repos-
itory are in Portable Document Format (PDF) and contain
an average of 7,826 words each. The smallest document has
1,227 words, while the largest one 57,169. In the following,
we refer to this repository as Rd.

1. http://export.arxiv.org/api/query?search_query=query
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2.2 Clustering the Documents and Retrieving Topics

Since adversaries know neither the exact number of clusters
nor the topics covered by the repository, they want to dis-
cover both automatically and then focus their in-depth anal-
ysis only on documents related to topics of their interest. In
the first automatic phase, the adversaries can use document
clustering and topic modeling techniques. Document clus-
tering and topic modeling are two data mining techniques
used to automatically organize and retrieve information
from unorganized collections of text documents. The goal
of document clustering [14] is to organize a repository of
documents into groups of similar documents. Instead, topic
modeling techniques [15], [16] aim to build a latent semantic
representation of the documents, detecting keywords that
describe the subject dealt with by the documents. In particu-
lar, the latent semantic representation of a set of documents
is called Topic. In the following sections, we describe the
steps the adversaries should perform on the exfiltrated
repository to retrieve the documents of their interest.

2.2.1 Text pre-processing and feature extraction
Before starting the analysis, the text has to be normal-
ized and cleaned of all the elements that do not provide
information about the topic (e.g., numbers). To this end,
the pre-processing phase is a key component of every text
classification tool [17]. Hence, the adversaries perform on
the documents standard pre-processing operations such as
tokenization, stemming, normalization of the upper and
lowercase, and deletion of number and symbol characters.
Once the documents inRd have been normalized, the adver-
saries proceed with the feature extraction. In text analysis,
a document and its content are usually represented as a
vector, where each position of the vector represents a term
(i.e., one or more consecutive words in the document) with an
associated weight.

In the feature extraction step, the adversaries extract the
terms that occurred within the documents and assign them
a weight through TF-IDF. The TF-IDF (Term Frequency-
Inverse Document Frequency) [18] is a function that assigns
a weight to a term in relation to a document. The greater
the weight, the greater the importance of the term for the
document. The idea behind the TF-IDF is to give more
importance to terms that occurred within a document but
are generally not frequent within the document repository.
Therefore, terms that are characteristic only of a group of
documents are considered significant.

By calculating the TF-IDF for each term, the adversaries
obtain a TF-IDF matrix as the one in Fig. 1. Each column
represents a document with a Document Vector containing
the weights of the terms for that document. Instead, each
row indicates a term with a Word Vector containing the
weights of that term for each document in the repository.

2.2.2 Document clustering
At this point, the adversaries are ready to group the doc-
uments according to the features extracted in the previous
step. First, they need to estimate the correct number of clus-
ters in the repository, which is one of the major challenges in
cluster analysis [19]. The most popular approach proposed
in the literature is internal clustering [20]. This method
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Figure 1. Matrix representation of documents: each column identifies
a document, while each row represents a term. A Document Vector is
the column associated with a document and contains the weights of the
terms for that document. A Word Vector is a row related to a term and
contains its weights for each document in the repository.

typically involves three steps: (1) apply to the dataset several
clustering algorithms using different combinations of pa-
rameters, (2) compute the corresponding internal validation
score for each obtained partition, and (3) detect the optimal
number of clusters by choosing the partition with the best
internal validation score. There are over thirty typologies of
internal clustering evaluation [20] that can be used in steps
2 and 3 described above. Among the most widely adopted,
we consider the Silhouette Coefficient [21], the Calinski-
Harabasz Index [22], and the Davies-Bouldin Index [23].

Thus, we assume adversaries use these internal vali-
dation scores to infer the number of clusters K in the
repository. Once detected the number of K clusters (three
in this case), the adversaries rely on the TF-IDF weight-
ing scheme and K-means to cluster the documents. K-
means [24] is a popular clustering algorithm that takes
as input a number k of expected clusters and finds a k-
partition such that the squared error between the empirical
mean of a cluster (centroid) and the points in the cluster
is minimized. Applying K-means on the document vectors
of the TF-IDF weights, the adversaries obtain clusters that
correctly group the exfiltrated documents according to their
topics, as shown by their projection in Fig. 2. To visualize
the clusters obtained by the adversaries in this section and
the next ones, we performed a dimensionality reduction on
the TF-IDF weights by applying the t-distributed stochastic
neighbor embedding (t-SNE) [25], an algorithm that allows
visualizing high dimensional data in a low dimensional
space. The color of each item in the figure represents the
original topic of the document, whereas the shape of the
item represents the cluster the document belongs to. As we
can see, the clustering result is remarkably similar to the real
one. Therefore, the adversaries are able to correctly distin-
guish documents belonging to the three different topics.
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Figure 2. Projection of the clusters obtained through K-means from the
original repository composed of documents related to Artificial Intelli-
gence(AI), Database (DB), and Cryptography and Security (CR).

2.2.3 Topic modeling
In the previous section, adversaries cluster the documents
according to the TF-IDF weights. Here, they want to infer
the topic covered by each of the K clusters by retrieving the
terms that describe each specific cluster. To this end, adver-
saries leverage Latent Dirichlet Allocation (LDA) [16], one
of the most used topic modeling algorithms, that provides
as output for each cluster a list of terms ordered by their
relevance to the topic. We define as M keywords, the first
M terms of the output list representing the topic of a given
cluster. Tab. 1 shows the top 10 keywords extracted from
each cluster in the repositoryRd by the adversaries. The lat-
ter might infer from these keywords the three topics covered
in Rd, namely: Artificial Intelligence, Database systems,
and Cryptography and Security. After this step, adversaries
focus their analysis only on documents addressing specific
topics in which they are interested. The paper does not cover
the second phase since our techniques aim to deceive the
first phase, of which results also influence the second one.
Due to the proposed deceptive operations, the documents
covering the topic of interest for the adversaries will be
scattered throughout all clusters. As a result, adversaries
can not focus on just one cluster but on all of them.

3 OPERATIONS

3.1 Replacement operations of terms
This subsection describes the idea behind the deceptive
operations, or the term-replacement operations, illustrating
the relationship between the term-replacement operations
and the resulting changes in the TF-IDF matrix calculated on
the sets of documents inR. This paper refers to keyword k as
the term to be replaced and deceptive term dk as a new term,
not contained in R, that replaces one or more keywords k.

Table 1
Top 10 keywords extracted from each cluster using LDA.

AI DB CR

learn query scheme
plan node protocol
agent object security

decision logic message
policy xml signature
action attribute public

network tree attack
constraint semantic service
strategy update random

intelligence predicate bit

To explain the effect of a term-replacement operation,
we rely on the concepts of centroid and distance between
centroids. Let T be the set of terms contained in the docu-
ments of R, S be a set of documents in R, and consider a
sub-matrix of the TF-IDF weights of R that contains only
the columns representing the documents in S. We define
as the centroid of S the vector that contains the element-by-
element average of the rows in this submatrix. Let S1 and S2

be two sets of documents, the distance between S1 and S2,
denoted d(S1, S2), is the Euclidean distance between their
centroids.

Given a repository of documentsR, this paper considers
the following four strategies to replace keywords at the level
of the documents set, where all occurrences of a certain
keyword are replaced inside all the documents contained
in a specific set.

(i) 1-to-1 replacement: Consider a repository R par-
titioned in n > 1 sets of documents, such that R =
{S1 ∪ · · · ∪ Sn}. Let k be a keyword for the repository R,
and dk a deceptive term. The 1-to-1 replacement operation
changes all the occurrences of k in all the documents of the
repository R, with the deceptive term dk.

After the 1-to-1 replacement, the deceptive term dk ap-
pears in the same documents and with the same frequencies
of k. Thus, there is a new row in the TF-IDF matrix of R for
dk, which has precisely the same weights as k. Moreover,
since the keyword k no longer appears in the documents
of R, the row in the TF-IDF matrix associated with k
disappears as well. Hence, the 1-to-1 replacement does not
alter the relative position among the centroids of all the sets
of documents Si. In addition, since k was a keyword for R,
also dk will be a keyword for the deceptive repository R′.

Of course, it is possible to perform several times the 1-to-
1 replacement operation that, for brevity, in the following,
we call m-multiple 1-to-1 replacement. In particular, let M
be the maximum number of keywords computed on the
repositoryR, and m < M . A m-multiple 1-to-1 replacement
performs m times a 1-to-1 replacement on R using different
keywords, says {k1, . . . , km}, and different deceptive terms
{dk1, . . . , dkm}. In particular, each jth execution of the m-
multiple 1-to-1 operation replaces a keyword kj with a
deceptive term dkj in all the documents ofR. Therefore, dkj
represents the deceptive term with which the m-multiple 1-
to-1 operation replaces kj in the documents of the repository
R at the jth execution of the 1-to-1 replacement.
(ii) 1-to-N replacement: Consider a repository R parti-
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(a) Basic Shuffle.
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(c) Shuffle increment.

Figure 3. Fig. 3(a) shows the projection of the repository (composed by AI, DB, and CR) modified by the Basic Shuffle operation. Fig. 3(b) and
Fig. 3(c) show, respectively, the projections of the repository obtained by applying Shuffle reduction and Shuffle increment.

tioned in n > 1 sets of documents, such that R = {S1 ∪
· · · ∪ Sn}. Let k be a keyword for R, and {dk1, . . . , dkn}
be a set of deceptive terms. The 1-to-N operation replaces
all the occurrences of k with a different deceptive term dki
in each document of Si. Thus, for every i, after the 1-to-N
replacement, the term dki appears in the documents of Si

instead of the keyword k and dki does not appear in the
documents of R \ Si.

Note that after the 1-to-N replacement, the keyword k no
longer appears in the documents of R and, consequently, in
its TF-IDF matrix. At the same time, after the replacement,
in the TF-IDF matrix n new rows appear, one for each
deceptive keyword dki. Finally, since the deceptive term dki
appears only in the documents of the set Si, its weight will
be greater than zero in the documents that belong to Si and
zero for the others. Hence, the centroid of each set Si tends
to move away from the centroids of the sets Sl for each i, l
with i, l ∈ {1, . . . , n} and i 6= l. In particular, the higher the
rank of keyword k is, the more the centroids tend to move
away from each other.

It is possible to perform several times the 1-to-N replace-
ment. We call in the following this operation m-multiple
1-to-N replacement. This operation replaces, in all the
repositoryR, m keywords with m×n deceptive keywords.
Let M be the maximum number of keywords computed
on the repository R, and let m ≤ M . A m-multiple 1-to-
N replacement performs m times a 1-to-N replacement on
all the Si ∈ {S1, . . . , Sn} replacing m different keywords,
{k1, . . . , km}. In particular, each jth execution of the 1-to-N
operation replaces a keyword kj with n deceptive keywords
dk1,j , . . . , dkn,j in each of the subsets Si. Thus, dki,j repre-
sents the deceptive term with which the m-multiple 1-to-N
operation replaces kj in the set Si during the jth execution
of the 1-to-N replacement operation.

(iii) N-to-1 replacement: Consider a repository R parti-
tioned in n > 1 sets of documents, such thatR = {S1∪· · ·∪
Sn}. Let the keywords {k1, . . . , kn} be a set of terms, such
that ki is a keyword for the set of documents Si, while ki is
not a keyword for Sl, with i, l ∈ {1, . . . , n} and i 6= l. The N-
to-1 operation replaces in every set of documents Si all the

occurrences of the keyword ki with the deceptive keyword
dk. Thus, after the N-to-1 replacement, the deceptive term
dk appears in the documents of Si instead of ki, for every
i. In the N-to-1 replacement, the goal is to bring closer the
centroids of the set of documents Si, replacing N different
keywords with the same deceptive keyword dk. Differently,
the 1-to-N replacement aims to move away the centroids
of the set of documents Si, replacing a unique keyword
with N different deceptive keywords. Following the N-to-
1 replacement, the TF-IDF weights of all the keywords ki
drop to zero for the documents in Si, whereas a new row
associated to the deceptive keyword dk appears in the TF-
IDF matrix of R. The TF-IDF weight of dk is greater than
zero for all the documents in Si that previously contained
the keyword ki. Hence, the centroid of each set Si tends to
get closer to the centroid of Sl, for every i, l. In particular, the
higher the rank of the keywords ki is, the more the centroids
tend to get closer to each other.

It is possible to perform several times the N-to-1 re-
placement. We call this operation in the following m-
multiple N-to-1 replacement. This operation replaces in
all the repository R, m × n keywords with m deceptive
keywords. Let M the biggest number of keywords such that
all the Si ∈ {S1, . . . , Sn} have at least M keywords, and
let m ≤ M . A m-multiple N-to-1 replacement performs
m times a N-to-1 replacement on all the Si, replacing n
different keywords, say {k1,j , . . . , kn,j}, for each execution
j, with j ∈ {1, . . . ,m}. In particular, each jth execution of
the N-to-1 operation replaces the keyword ki,j in the set of
documents Si, for every i, with the deceptive term dkj .

(iv) N-to-N replacement: Consider a repository R
partitioned in n > 1 sets of documents, such that R =
{S1 ∪ · · · ∪ Sn}. Let {k1, . . . , kn} be a set of keywords,
such that each ki is a keyword for one set of documents Si,
while ki is not a keyword for Sl, with i, l ∈ {1, . . . , n} and
i 6= l, and dk1, . . . , dkn be a set of deceptive terms. The N-
to-N operation replaces in every set of documents Si all the
occurrences of the keyword ki with the deceptive keyword
dki. Thus, after the N-to-N replacement, the deceptive term
dki appears in the documents of Si instead of ki, for every
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i.
The N-to-N replacement is similar to a 1-to-1 replace-

ment applied to a single set of documents Si, instead of
to all the repository R. After an N-to-N replacement, the
deceptive term dki will have in the TF-IDF matrix of R, the
same TF-IDF weights of the keyword ki. Hence, since ki was
a keyword for the set Si, also dki will be a keyword after
the N-to-N replacement.

3.2 Shuffle Clusters

Starting from a repository R where each cluster is made
of documents that belong to a single topic, the Shuffle
operation builds a deceptive repositoryR′ in which some or
all the clusters contain documents of different topics. Thus,
the adversaries cannot precisely cluster the documents ofR′
according to the original topics of R. The Shuffle operation,
given a set L made of l different clusters, partitions each
cluster in L into p subsets of documents and mixes these
subsets among themselves, building a new set of clusters
L′. In particular, each new cluster in L′ is made of l subsets
of documents each of which belongs to a different original
cluster of the set L. Since each new cluster contains exactly
one subset of each original cluster, the relationship between
p and l determines the number of resulting new clusters in
L′.

Definition 3.1. Shuffle (R,C1,. . . ,Cl)⇒ R′.
Given a Repository R composed of n > 1 clusters, let CR be the
set of clusters in R. Consider the clusters L = {C1, . . . , Cl} in
CR, with 1 < l ≤ n. The Shuffle operation partitions each cluster
Ci of L into p subsets of documents, with l− 1 ≤ p ≤ l+ 1 and
l− 1 ≥ 2, such that Ci = si,1 ∪ · · · ∪ si,p, where si,j represents
the subset j of the cluster Ci. The Shuffle operation replaces some
keywords in L in such a way as to form p new clusters C ′i. Each
new cluster C ′j is composed of l subsets of documents si,j in
such a way that C ′j = s1,j ∪ · · · ∪ sl,j with j ∈ {1, . . . , p}.
Depending on the relationship between p and l, the effect of the
Shuffle operation on the repository R′ is different. In particular,
there are three possible variants: The Basic Shuffle in which the
number of partitions p is equal to l and thus the number of clusters
in the repositoryR′ is n, the Shuffle Increment where the number
of partition p is equal to l + 1; in this case R′ contains n +
1 clusters, and the Shuffle Reduction in which the number of
partitions p is equal to l−1, and the repositoryR′ contains n−1
clusters. After one of the three Shuffle operations, the adversaries
that search for n − l + p clusters in the repository R′ will find
the following set of clusters: CR′ = (CR \ L) ∪ L′, where L′ =
{C ′1, . . . , C ′p}.

In our implementation, the Shuffle operations first com-
pute the keywords of all the clusters Ci in L. Then, it
partitions the documents of each Ci into p subsets of
documents such that Ci = si,1 ∪ · · · ∪ si,p, with si,j that
represents the subset jth of the cluster Ci. The Shuffle
operations select subsets of documents to compose the new
clusters {C ′1, . . . , C ′p}, such that each new cluster C ′h, with
h ∈ {1, . . . , p}, is made of l subsets of documents, one
subset from each Ci. For the sake of simplicity, we assume
that the Shuffle operations select the subsets of documents
that compose the new cluster C ′h picking from each cluster
Ci the hth subset, thus C ′h = s1,h ∪ · · · ∪ sl,h. Finally, for

each cluster C ′h, the Shuffle operations perform an l-to-
1 replacement, which overall sums up to p times a l-to-1
replacement operations. An l-to-1 operation replaces l differ-
ent keywords, each one computed on each Ci, i ∈ {1, . . . , l}
with the deceptive term dkh (see Sec. 3.4 for details about the
keywords selection). In particular, let ki be a keyword of Ci.
The l-to-1 operation replaces all the occurrences of ki in the
subset si,h with the deceptive term dkh, with h ∈ {1, . . . , p}
for every i ∈ {1, . . . , l}. Note that each of the h execution of
the l-to-1 operation uses a different deceptive term dkh.

A single l-to-1 replacement could not be enough to bring
the centroids of all the subset {s1,h, . . . , sl,h} sufficiently
closer to form the new cluster C ′h, for every h ∈ 1, . . . , p.
Therefore, the Shuffle operation has to perform m-multiple
l-to-1 replacements such that the following equation is sat-
isfied:

d(si,h, (C
′
h \ si,h)) < d(si,h, (Ci \ si,h))
∀i∈{1,...,l}∧∀h∈{1,...,p}

(1)

The formula verifies that after each iteration of l-to-1
replacement, the centroid of si,h is closer to the centroid of
C ′h \si,h (left term of the formula) than to the one of Ci \si,h
(right term). In this way, each pair (C ′h \ si,h, si,h ) is close
enough to build the new cluster C ′h, and the subsets of Ci

will not cluster together.
Fig. 3(a) 3(b) 3(c) show the deceptive repositoryR′d after

we applied on the repositoryRd the Basic Shuffle (Fig. 3(a)),
the Shuffle Increment (Fig. 3(b)) and the Shuffle Reduction
(Fig. 3(c)). To perform the three operations, we insert into the
set L all the clusters of the repositoryRd and set the value of
p as 2, 3, 4 respectively for the Shuffle Reduction, the Basic
Shuffle, and the Shuffle Increment. After the operations,
each cluster (denoted in the figures by the circle, square,
diamond, and triangle markers) is made of a mixture of
topics (green, blue, and yellow markers).

3.3 Change Topic of the cluster

The Change Topic operation aims to change the original
topic of a cluster of documents Ct in R′. The Change Topic
operation builds a repositoryR′ replacing several keywords
of Ct with a set of deceptive terms {dk1, . . . , dkl}, in such
a way that topic modeling performed on R′ returns a topic
that depends on the deceptive terms, and such a topic can
be different from the original one.

Definition 3.2. Change Topic(R,Ct,{dk1, . . . , dkl})⇒ R′.
Given a repository R that contains n > 1 clusters, a target cluster
Ct inR and a set of l deceptive terms {dk1, . . . , dkl}, the Change
Topic operation replaces l keywords with l deceptive terms, using
one different deceptive term for each different keyword. At the end
of the operation, the adversaries that perform topic modeling on the
repository R′ will find for the cluster Ct the following keywords
{dk1, . . . , dkl}.

In our implementation, the Change Topic operation com-
putes the keywords of Ct and ranks them by their TF-
IDF weight. Let {k1, . . . , kl} be the first l keywords of Ct

in the rank. The Change Topic operation performs a 1-to-
1 replacement on the documents of Ct, replacing all the
occurrences of the keyword ki with the deceptive term dki,
for every i ∈ {1, . . . , l}. Overall, the Change Topic operation
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performs l times a 1-to-1 replacement on each document of
Ct.

After the operation, the deceptive term dki is a keyword
for the cluster Ct in R′. Indeed, dki has the same TF-IDF
weight in R′ as ki has in R. Thus, since ki is a keyword for
Ct in R, dki is a keyword for Ct in R′ as well. Moreover,
since ki and dki have the same weight in the TF-IDF of R
and R′, respectively, the centroid of Ct is the same both in
R and in R′.

3.4 Observations on the keywords and the selection of
the documents

This section describes some of the possible approaches to
partition a cluster C of documents ofR into subsets suitable
to be used by the deceptive operations described in the pre-
vious sections. In addition, we present the criteria we used
to select the keywords to be replaced with the deceptive
terms. When partitioning a cluster C to apply one of the
deceptive operations, there are two main aspects to face:
the number of documents each partition should contain
and which documents of C should be grouped in the same
partition.

The number of documents each partition is made is a
crucial parameter to decrease the purity [26] of the resulting
repository R′. Purity is an external evaluation metric that
assesses the quality of given clusters by indicating the
percentage of the total number of correctly classified objects
(documents). For instance, in the Shuffle operation, creating
partitions with roughly equal numbers of documents leads
to creating new clusters in R′ with a purity roughly equal
to zero, which guarantees the greatest possible deception.
In the following experiments, all the clusters in our test
repository Rt have the same number of documents. Hence,
given the observations above, the best strategy in our case
is to create the partitions used in each deceptive operation
with the same number of documents. The second aspect to
face is which documents of C should be placed in the same
partitions. A trivial approach is to partition the documents
of a cluster C in subsets of documents {s1, . . . , sl} through
a random selection of the documents in C . This approach
likely leads to group into the same subset documents uni-
formly spread among the cluster C , with the centroid of
each subset si near the centroid of C and thus close to each
other. However, the more the centroids of the subsets are
close to each other, the more keywords the cluster opera-
tions need to replace in order to push the centroids away
among them (See Tab. 2). A better choice is to partition the
documents so that the centroids of the subsets si result far
away among them. An approach to generate such subsets
si is to leverage a clustering algorithm, such as K-means.
Since standard K-means may generate partitions with an un-
balanced number of documents (e.g., a partition with most
of the documents and others with very few documents),
we used the constrained version of k-means [27], which
ensures that each partition has a roughly equal number of
documents.

For what concern the selection of the keywords to be
replaced with the deceptive terms, we select the keywords
by their TF-IDF weights in descending order. This approach
minimizes the number of deceptive keywords to be replaced

Table 2
Number of terms to involve for deceptive operations selecting subsets

of documents randomly or by grouping similar ones and replacing
random terms.

B. Shuffle Shuffled In. Shuffle Red.

Random selection 8,6 10,2 7,4
Constrained K-means 8 10 6
K-means + random terms 71,6 86,6 41,9

to accomplish any of the cluster operations. Indeed, the
effectiveness of the 1-to-N replacement and the N-to-1 re-
placement in pushing away or bringing close among them
the centroids of partitions {s1, . . . , sl} is proportional to the
TF-IDF weight of the replaced keywords (as discussed in
Sec. 3.1).

To better understand how the documents and the key-
words selection affect the number of keywords needed to
perform a deceptive operation, we evaluated the deceptive
operations in the following three settings: partitions created
with a random selection of the documents and keywords
selected by TF-IDF weight; partitions created leveraging
the constrained K-means and keywords selected by TF-IDF
weight; and partitions created leveraging the constrained
K-means and keywords selected randomly. For each of the
above settings (except the constrained k-means version), we
repeat the experiment 10 times and compute the average
number of keywords needed to perform the cluster opera-
tions. Tab. 2 shows the results of this experiment. The best
combination to minimize the number of keywords replaced
is the one based on the constrained k-means and the key-
word selected by TF-IDF weight (constrained k-means in
the table). This is in line with our previous observations
in this section. Randomly selecting the keywords increases
the number of keywords drastically to be replaced. For
example, in the case of the Shuffle Increment operation,
the number of keyword replacements increases from about
10 to more than 80. Building the partitions by randomly
selecting the documents requires a few more replacements
than partitioning the documents via k-means.

3.5 Deceiving the number of topics

An accurate clustering result requires the right estimation of
the number of clusters in a repository of documents. By our
assumption, the adversaries that exfiltrated the repository
R′ do not know the number of clusters that the repository
contains. Thus, they have to estimate the number of clusters
in the repository R′ through internal cluster indices (see
Section 2.2.2). This section aims to illustrate our proposed
technique to deceive adversaries in such estimation, making
them believe that the repositoryR′ contains a given numer-
ical value Kd for the number of clusters which is deceptive.

In the literature, there are several internal cluster indices
that the adversaries can leverage to estimate the number
of clusters of R′. The main idea behind these indices is
to evaluate the compactness (how close are the items of
the same cluster), the separation (how distant are the clus-
ters from each other), or a combination of them. Every
index evaluates these criteria accordingly with the different
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evaluation methodologies they use (e.g., average distance,
minimum distance, the sum of square error).

However, it is not possible to know in advance the
validation indices the adversaries will use. Therefore to
deceive adversaries, the clusters in R′ have to be enough
compact and separated so that for all the indices, or at
least most of them, the resulting number of clusters is Kd.
In terms of our cluster operations, we propose to redefine
the stopping criteria for the number of term-replacement
to be performed (recall that both the 1-to-N and the N-to-
1 operation contribute to pushing away or bringing close
clusters among them) so that their number is greater than
or equal to those defined in Eq. 1.

To evaluate the minimum number of term-replacement
to deceive adversaries on the estimation of the number of
clusters in the repository R′, we introduce the following
function:

f(R, Op,Kd,Kmax, Tmax,Sivi) (2)

The function f , given a repository R, a cluster operation
Op, and a Set of internal validation indices Sivi, computes
the minimum number of term-replacement operations such
that all the indices in Sivi evaluate Kd as the estimated
number of clusters. Since it is impractical to evaluate all the
possible numbers of clusters, we reduce the search space
of the number of clusters from 2 up to Kmax. Finally,
Tmax represents the maximum number of term-replacement
operations we are willing to perform. It is important to set
Tmax because internal validation indices, depending on how
they evaluate the compactness and the separation, could
cause an unlimited number of term-replacement operations
when evaluating particular data distribution (e.g., presence
of outliers, skewed distribution) [28].

Computing f on the repository Rd for the Basic Shuffle,
the Shuffle Increment, and the Shuffle Reduction operations,
we find that to deceive adversaries about the number of
clusters contained in R′d, for the Basic Shuffle operation,
we have to perform 41 term-replacement instead of 8,
38 replacements for the Shuffle Increment instead of 10,
while 18 for the Shuffle Reduction. For the above-mentioned
results, we compute the function f evaluating the follow-
ing indices: the Silhouette Coefficient (SIL), the Calinsky-
Harabasz index (CH), and the Davies-Bouldin Index (DB),
and we set as 100 the maximum number of replacement
operation Tmax. For the Shuffle operation, we set Kmax as
9 since we divided the repository into 9 partitions, whereas
Kd as 3 because we aim to make the adversaries believe that
R′d contains 3 clusters. For the Shuffle Increment operation,
we set Kmax as 12, and Kd as 4. Finally, for the Shuffle
Reduction operation, we set for Kd and Kmax respectively
2 and 6.

Tab. 3 shows the scores of the internal validation indices
computed on R′d varying the number of clusters that the
adversaries are looking for. As we can see, the number of
clusters estimated by the adversaries after each operation
coincides with the predetermined deceptive number of clus-
ters Kd.

Table 3
Scores of the Davies-Bouldin Index (DB), Calinski-Harabasz Index

(CH), and Silhouette Coefficient (SIL) based on the number of clusters
searched for.

Estimated Number of clusters

2 3 4 5 6

Shuffle
DB 4.13 3.76 3.86 4.25 4.50
CH 19.54 20.45 16.26 13.90 12.52
SIL 0.044 0.063 0.063 0.046 0.038

Shuffle-Incr
DB 4.36 4.07 3.55 3.62 3.57
CH 17.16 17.90 19.50 15.26 12.77
SIL 0.040 0.056 0.070 0.062 0.059

Shuffle-Red
DB 3.90 4.68 4.59 4.43 4.76
CH 23.17 16.01 12.97 11.31 10.15
SIL 0.052 0.037 0.030 0.032 0.032

4 POSSIBLE ADVERSARIES

4.1 The Attack Model

This subsection defines three models, each representing an
adversary with different knowledge of both the content of
the repository R′ and the deception techniques adopted.
• Black Box adversaries: They are the weakest kind of

adversaries we consider in this work. They are not
aware of the proposed deceptive techniques and believe
that the exfiltrated repository R′ is the original one.

• Gray Box adversaries: These adversaries suspect that
some deceptive operations may have been executed on
the repositoryR′. Nonetheless, even though they know
the presented deceptive operations, Gray Box adver-
saries neither know how many and which deception
operations were performed, nor how many and which
deceptive keywords have been used to perform each
operation.

• Enhanced Gray Box adversaries: They share the same
knowledge as the Gray Box adversaries. However, these
adversaries also leverage the Oracle Function to ob-
tain an ordered list of terms in R′ that may have
been replaced by the deceptive operations (details in
Sec. 4.1.1). The ability to invoke the Oracle Function
makes Enhanced Gray Box adversaries the strongest.
They represent the worst-case scenario in which we
evaluate the performances of the deceptive operations
proposed.

We assume that Gray Box and Enhanced Gray Box
adversaries can remove deceptive keywords from the repos-
itoryR′, as discussed in Sec. 4.2. In addition, we assume that
all the adversaries described in this section: cannot access
the mapping of the keywords replacements, use K-means as
the clustering algorithm and the Silhouette Coefficient, the
Calinski-Harabasz Index, and the Davies-Bouldin Index to
estimate the number of clusters contained in the exfiltrated
repository. It is important to note that none of the three
adversaries can self-estimate metrics such as the Purity or
the ARI on their clustering since they do not know the
ground truth of the repository R.

4.1.1 The oracle function

Knowing which are the deceptive keywords in the reposi-
tory R′ may be a great advantage for the adversaries. In-
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deed, leveraging this information, they can eliminate those
terms to subvert the operations.

In this section, we define the Oracle Function to emulate
adversaries that somehow gained access to the list of terms
and thus are able to select the deceptive terms we used to
build the deceptive repository.

Definition 4.1. Oracle (R′)⇒ Lk.
Consider the repository R′ made of M keywords, such that D
keywords are all and only the deceptive keywords used to generate
the repositoryR′, and the remaining M−D terms are the original
keywords that are both inR andR′. The Oracle Function takes as
input a deceptive repository R′ and returns as output an ordered
list of M keywords Lk = {dk1, . . . , dkD, kD+1, . . . , kM},
where the first D items of the list are deceptive keywords, while the
remaining M −D items are unchanged keywords. In particular,
the deceptive keyword dki, with i ∈ {1, . . . , D}, represents
the ith deceptive keyword used to generate the repository R′.
The remaining M − D keywords are ordered as they were the
next terms to be replaced by the operation used to generate the
repository R′.

Although Enhanced Gray Box adversaries, through the
Oracle Function, can access in an ordered way all the de-
ceptive keywords, they still do not know the number D
of deceptive keywords contained in the repository. Thus,
Enhanced Gray Box adversaries cannot be sure if the jth

keyword, with j ∈ {1, . . . ,M}, provided by the Oracle
Function, is a deceptive keyword or not.

4.2 Countering the operations
The Gray Box adversaries are aware of the deceptive oper-
ations described in this work. In this section, we explore a
possible approach that this kind of adversary could carry
on to counter the deceptive operations and build a new
repository Rr that is more significant than R′.

The adversaries, to smooth the effect of the deceptive
operations, have to solve the following two problems: (1)
estimate the right number of clusters contained in the repos-
itory, and (2) estimate how many and which deceptive key-
words are in the repository R′. Recall that if the adversaries
evaluate the number of clusters in R′ leveraging standard
techniques such as the Silhouette score or other internal
validation measures as explained in Sec. 2.2.2, they find out
the deceptive clusters accordingly with Sec. 3.5. Therefore,
adversaries have to counter the deceptive operations to ob-
tain meaningful information from the exfiltrated repository.

The adversaries know that, whatever the adopted policy
to replace keywords with deceptive keywords, the subsets
of documents that form the clusters in R′ are held together,
or separated, among them by the keywords with higher TF-
IDF weight. Thus, a possible approach to reduce the effect of
the deceptive operations and restore the original clustering
of documents is to remove those keywords that are likely
deceptive keywords from the repository R′.

The Gray Box adversaries do not know how many key-
words they have to remove fromR′. To estimate the number
of keywords to remove and the real number of clusters in
R′, they may perform the following iterative approach: us-
ing an internal validation index (e.g., Silhouette Coefficient),
they infer the optimal number of clusters Kinit for the repos-
itory R′. For each cluster C ′i in R′, with i ∈ {1, . . . ,Kinit},

they rank the keywords by TF-IDF weight and build the
ordered list of keywords LKi for C ′i. Let T be the maximum
number of keywords the adversaries are willing to remove
from each document. The choice of T is a trade-off for the
adversaries: the more keywords the adversaries delete from
the documents, the higher the probability of discarding both
deceptive and original keywords. The adversaries perform
T times the following procedure. For each cluster C ′i in R′,
they select the keyword k from LKi with the highest TF-
IDF weight. Then, the adversaries delete all occurrences
of k from the documents in R′, and remove k from the
list LKi. Let Kestim be the maximum number of clusters
the adversaries suppose to be in R. At the end of each
step, the adversaries assess on the repository the internal
validation score for K different number of clusters, with
K ∈ {2, . . . ,Kestim}. At the end of the T *Kdeceptive steps,
the adversaries evaluate all the internal validation scores
they computed and select the configuration that achieved
the best score accordingly with the internal validation index
they used. If Rr is the repository that achieves the best
internal validation score, the adversaries assume as Rr the
restored repository of R. Therefore, the adversaries consider
the keywords deleted from R′ to achieve Rr as the deceptive
keywords of R′ and the number of clusters of Rr as the
number of topics covered by R.

Enhanced Gray Box adversaries follow the same ap-
proach as Gray Box, but they have a significant advantage
in determining the deceptive keywords since they can rely
on the Oracle Function. Indeed, Enhanced Gray Box adver-
saries leverage the Oracle Function to build lists of potential
deceptive keywords to remove.

For instance, assume that Enhanced Gray Box adver-
saries exfiltrate the repository R′d, that has been generated
starting from Rd using the Basic Shuffle operation and
60 deceptive terms for each document (see Fig 3(a)). The
adversaries apply the procedure outlined in this section to
obtain a repository Rr . Enhanced Gray Box adversaries set
T and Kmax respectively to 300 terms and 6 clusters. Fig. 4
shows the Silhouette scores obtained by Enhanced Gray Box
adversaries removing the terms from the repository R′d.
Each colored line represents the Silhouette score for a dif-
ferent number of clusters. At the end of the assessment, the
adversaries find out that the Silhouette score is maximized
when removing 130 terms from R′d and searching for 5
clusters (red dot in the figure). Thus, the adversaries build
the repositoryRr accordingly with the configuration found.

5 RESULTS

5.1 The deceptive repositories
To evaluate the adversaries’ performances, we built 6 dif-
ferent deceptive repositories starting from the repository
Rd described in Sec. 2.1. To build the 6 repositories, the
following deceptive operation has been applied onRd: Basic
Shuffle, Shuffle Increment, and Shuffle Reduction. Each de-
ceptive operation has been executed twice, once partitioning
the documents through random selection and once through
the constrained version of K-means. With both approaches,
all the subsets have been made approximately of the same
number of documents. The keywords have been replaced
in descending order by their TF-IDF weight. Finally, for the
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Table 4
Adjusted Rand Index (ARI) values achieved by the adversaries on the repository R′

d against Basic Shuffle, Shuffle Incrementation (Shuffle Incr.),
and Shuffle Reduction (Shuffle Red.) applied to subsets of documents selected randomly (random), by grouping similar ones (similar), or involving

random terms. Note that the ARI score obtained by the adversaries on the original repository R is 0.94.

Black Box Gray Box Enhanced Gray Box

m-replacement #clust ARI #del #clust ARI #del #clust ARI

Basic-Shufflerandom 60 3 -0.004 50 5 0.33 130 5 0.56
Shuffle-incrementrandom 60 4 -0.005 60 6 0.28 130 5 0.56
Shuffle-reductionrandom 60 2 -0.003 50 5 0.23 130 5 0.56
Basic-Shufflesimilar 60 3 -0.004 60 6 0.27 110 6 0.51
Shuffle-incrementsimilar 60 4 -0.005 80 6 0.21 110 6 0.51
Shuffle-reductionsimilar 60 2 -0.003 40 6 0.20 110 6 0.51
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Figure 4. Values of the Silhouette Coefficient obtained on the modified
repository removing up to 300 terms from each identified cluster. The
red dot indicates the number of terms to remove in order to achieve the
best Silhouette score.

sake of comparison, all the operations performed the same
number of m-terms-replacements. We set the number of m-
terms-replacements to 60, since, according to our experi-
ments, it is the minimum number of replacements such that
the Silhouette Coefficient, the Calinski-Harabasz Index, and
the Davies-Bouldin Index return the deceptive number of
clusters for the repositories. For example, Fig. 3(a), 3(b), 3(c),
respectively, show the deceptive repositories built with the
Basic Shuffle, the Shuffle Reduction, and Shuffle Increment
operations, using the constrained version of K-means to
build the subset of documents.

5.2 Attacking the deceptive repositories

To evaluate the adversaries’ performance, we use the Ad-
justed Rand Index (ARI) [29]. Given a predicted clustering
(the one obtained by the adversaries, in our case) and the
clustering given by the true labels of the documents, the
ARI measures the similarity between these two clusterings.
The value of the ARI varies between −1 and 1, where
a value of 1 indicates a perfect match between the two
clusterings, a value close to 0 a random labeling of the
predicted clustering, and a negative value a labeling worst
than a random one.

The Black Box adversaries believe they have exfiltrated
the unmodified repository. Therefore, Black Box adversaries
analyze the exfiltrated repository as described in Sec. 2. At

the end of the analysis, Black Box adversaries will discover
just the deceptive clusters. Since our operations build each
deceptive cluster by grouping together with a uniform dis-
tribution of documents of different topics, such clustering
of the Black Box adversaries achieves an ARI approximately
equal to 0, which corresponds to the same result that the ad-
versary would have by grouping the documents randomly.

Enhanced Gray Box and Gray Box adversaries are aware
that the exfiltrated repositories could be deceitful. However,
they can not be sure of that. They have two options. They
can consider the repositories not deceitful and analyze the
repositories as the Black Box adversaries obtaining the same
results. Alternatively, they can try to get rid of the deceptive
keywords, for example, applying the algorithm described
in Sec. 4.2, and building for each exfiltrated repository
a recovered version Rr . We assume that the adversaries
analyze the deceptive repositories by searching for 2 up to
6 possible clusters, attempting to remove up to 150 key-
words, and evaluating the repositories using the Silhouette
Coefficient, the Calinski-Harabasz Index, and the Davies-
Bouldin Index. At the end of the analysis, the adversaries
find out that the best configurations for each repository Rr

are the ones reported in Table 4. The table reports only the
results with higher ARI obtained by the Enhanced Gray
Box and Black Box adversaries. All the reported results
have been achieved by leveraging the Silhouette Coefficient.
Indeed, it was the internal evaluation index that provided
better performances in all the experiments. Enhanced Gray
Box adversaries are those that achieve the highest ARI,
between 0.51 and 0.56, while the Gray Box obtains an
ARI between 0.20 and 0.33. The highest performances of
the Enhanced Gray Box adversaries are due to the Oracle
Function. Although the Enhanced Gray Box adversaries
remove several original keywords from the documents, on
average 60 original keywords from each document (over
a total of 2,433 terms), they can completely clean up the
document from the deceptive keywords. Conversely, the
Gray Box adversaries remove a few original keywords from
the documents (about 10 original keywords). However, in
the Gray Box scenario, each document still contains more
than 10 deceptive keywords on average that are sufficient
to keep the document in the deceptive clusters created with
the deceptive operations described in this work. It is worth
noting that the repositories built using the constrained ver-
sion of K-means (similar in Tab. 4 and Tab. 6) are those that
lead both White-box and Gray-box adversaries to obtain
the worst results (i.e., incorrectly clustering the documents).
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Hence, the similar approach appears to be the most robust
against the counter operation. Enhanced Gray Box adver-
saries are able to achieve notable results. Indeed, an ARI of
56% can intuitively be interpreted as the 56% of documents
are correctly clustered. However, some considerations have
to be taken into account. Even assuming the Enhanced Gray
Box adversaries can self-estimate the ARI achieved by the
repositories, they still can not infer which documents are
correctly labeled and which are not (i.e., the adversaries do
not know the original topics of the documents). An ARI of
56% means that if the adversaries pick one document in a
cluster C ′, there is roughly 50% probability that C ′ contains
the majority of documents with the same original topic.

5.3 Increasing the number of true topics
In this subsection, we explore how deceptive operations per-
form by scaling up the number of true topics in the original
repository. For this analysis, we built 6 different deceptive
repositories, each of them containing a different number of
true topics, from 2 up to 7. All the repositories have been
built leveraging the Basic Shuffle operation (see Sec. 3.2)
and partitioning the documents randomly. In particular, the
7 true topics we used to build the repositories are the three
described in Sec. 2 ( Artificial Intelligence (AI), Database
(DB), Cryptography and Security (CR)), and four new topics
(Robotics (RO), Computers and Society (CS), Logic in Com-
puter Science (LO), Computational Complexity (CC)) that
we collected in the same fashion always from ArXiv. To as-
sess the performance of the Shuffle Operation, we compute
for each repository the ARI before applying the deceptive
operation (i.e., the ARI the adversaries would have gotten
exfiltrating the plain repository) and the ARI obtained by
the three kinds of adversaries after the operation has been
applied.

Table 5 sums up the results of these experiments. As
for the previous experiments, the Black Box adversaries
achieve an ARI of about 0 for all the configurations. This
result is straightforward since the Black Box adversaries
attempt to cluster the deceptive repositories without ap-
plying any countermeasures. Instead, in the other cases
(Original repository, Enhanced Gray Box, and Gray Box
adversaries), the ARI drops as we increase the number of
topics into the repository. However, while analyzing the
original repositories, the ARI falls of few points (−0.11),
from 0.96 on the repository containing 2 topics to 0.85 on
the repository containing 7 topics, for the Gray Box and
the Enhanced Gray Box the ARI fall down drastically. The
Gray Box adversaries achieve an ARI of 0.51 in the case
of a deceptive repository made of 2 topics, while an ARI
of 0.12 for the deceptive repository made of 7 topics. The
Enhanced Gray Box adversaries go from 0.68 to 0.28. These
results show that the deceptive operations become much
more effective as the number of clusters in the deceptive
repository increases.

5.4 Topic Modeling
The previous subsections analyzed the effect of deceptive
operations on document clustering. In particular, this sub-
section shows how deceptive operations affect topic model-
ing. We consider adversaries that try to infer the underlying

Table 5
Scores of ARI achieved by the adversaries in the Original repository
and after the Basic Shuffle operation when increasing the number of

topics.

Number of topics involved

2 3 4 5 6 7

Original 0.96 0.94 0.92 0.92 0.89 0.85
Black Box -0.0002 -0.004 -0.005 -0.005 0.006 0.0003
Gray Box 0.51 0.33 0.29 0.31 0.14 0.12
Enh. Gr. Box 0.68 0.56 0.48 0.47 0.43 0.28

Table 6
Percentages of deceptive keywords returned by LDA according to the

number of keywords retrieved from each topic and the deceptive
operation applied on the repository.

Number of topic keywords

10 20 30 40 50

Basic-Shufflerandom 100% 98% 98% 98% 95%
Shuffle-incrementrandom 100% 93% 92% 86% 80%
Shuffle-reductionrandom 100% 95% 88% 85% 75%
Basic-Shufflesimilar 100% 98% 96% 96% 89%
Shuffle-incrementsimilar 100% 90% 86% 83% 80%
Shuffle-reductionsimilar 100% 100% 95% 85% 74%

topics of the exfiltrated repository leveraging LDA, the
one of most popular topic modeling algorithms. Given a
repository of documents and a number of topics T , LDA
computes for each term in the documents the probability
that the term belongs to one of the T topics. The set of
n terms that have the highest probability according to the
LDA algorithm is defined as the topic keywords of each topic.
Note that the most used number of topic keywords is 10 [16].

Assume that a Black Box adversary wants to infer the
topic of each cluster of documents into the exfiltrated repos-
itory Rd. Thus, the number of topics T that such adversaries
seek is equal to the number of deceptive clusters.

To assess if our deceptive operations are able to deceive
the Black Box adversaries in inferring the topics, we use the
same deceptive repositories described in Sec. 5.1, and the
LDA version of Scikit-learn library [30]. In particular, we
measure the presence of deceptive keywords that the adver-
saries retrieve with LDA for each topic with n varying from
10 to 50. Analyzing the topic keywords computed by LDA
on the repositories, we make the following observations:

(i) With n = 10, for each topic, all the keywords retrieved
by LDA are deceptive keywords. Instead, with n = 50,
the percentage of deceptive keywords varies between 74%
and 95%, depending on the deceptive operations used to
build the repository. Thus, even considering a significant
amount of topic keywords (n = 50), very few real topic
keywords are retrieved using LDA. Moreover, as we can
see from Tab. 6, the real topic keywords are mainly at the
lower position of the rank, which means they have a low
probability of being significant for the specific topic. Indeed,
looking at the real topic keywords returned by LDA, we find
that they are generic keywords of computer science, such as:
lemma, root, induct, resource, program, rate, label.

(ii) Each topic retrieved by LDA describes with its top
ten keywords a different deceptive cluster within the decep-
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tive repository. Consequently, adversaries relying on LDA
will infer the deceptive topics designed by the defenders.

(iii) Each deceptive cluster of the deceptive repository
has one topic associated with it.

Combining these observations, we have that LDA finds
as topic keywords for a certain deceptive cluster, the same
deceptive keywords used to build the deceptive cluster
itself. Thus, the defender has the ability to manipulate the
topic that the adversaries will infer, choosing wisely the
deceptive keywords to use with the deceptive operations.
The defender has multiple strategies to pick the deceptive
keywords in order to show a specific deceptive topic to
the adversaries. Suppose the defender selects deceptive
keywords that fit both the deceptive context of the sentence
and the part of speech of the terms to be replaced. In that
case, it will be more challenging also for a domain expert
to recognize the documents modified by our operations. To
automatically perform this task, the defender can leverage
language modeling techniques such as [31], [32]. This paper
does not discuss the possible strategies of this extension, as
it affects the second phase of the attack, while we focus on
the first (see Sec. 1).

Note also the following interesting consequence of the
observations depicted above. Adversaries that first leverage
LDA to feed a clustering algorithm at the end of the com-
putation will group the documents of Rd in a way very
close to the deceptive clusters constructed by the defender.
Indeed, on our 6 deceptive repositories, the Black Box ad-
versaries group on average the 97% of the documents in Rd

accordingly to the deceptive clusters built by the deceptive
operations.

As a further experiment, to assess the robustness of
the deceptive operations against LDA, we also leverage a
commercial topic modeling tool, the Amazon Comprehend-
Topic Modeling [10]. It is a topic modeling tool developed
by Amazon Inc. that leverages the Amazon SageMaker La-
tent Dirichlet Allocation (LDA) algorithm, a custom version
of LDA developed by Amazon Inc.. Given a repository of
documents, Amazon’s tool provides as output two CSV
files. The first file reports for each document of the repos-
itory the topic number that the document is assigned to,
and the proportion of the document concerned with that
specific topic. Instead, the second file contains the top 10
topic keywords for each topic.

As for the results obtained with SKlearn’s implantation
of LDA, at the end of the experiments on the deceptive
repositories Rd, all the topic keywords returned by Ama-
zon’s tool are deceptive keywords. All the topic keywords
retrieved belong to a single deceptive cluster, and each
deceptive cluster has a topic associated with it. The result
of the experimentation with Amazon’s tool shows that our
proposed deceptive operations are robust also if adversaries
employ an implementation of LDA not known to the de-
fender, and with optimized parameter and data processing
pipeline.

Note that leveraging the Amazon Comprehend tool
makes sense only for the Black Box adversaries. Indeed, the
Enhanced Gray Box and Gray Box adversaries are aware
of the presence of deceptive keywords in the exfiltrated
repository. Thus, they do not perform topic modeling but
attempt to get rid of the deceptive keywords and cluster the

documents achieving the poor results shown in the previous
sections.

6 RELATED WORK

Adversarial setting: Several studies propose attacks to clus-
tering algorithms through the generation of adversarial
settings [33], [34]. Generally, an adversary injects malicious
examples into the training data to impact the clustering
results. There are two main typologies of these attacks:
poisoning and obfuscation. The poisoning attack aims to
worsen the clustering results as much as possible by cor-
rupting the data. The strategy is to create new clusters or
bridges between clusters adding samples within the dataset.
In the first case, the purpose is causing the misclassification
of a single cluster into more clusters. As for the bridge case,
the goal is to pretend that two different original clusters are
one. Instead, an obfuscation attack aims to hide a specific
data set. Typically it consists in adding a set of samples to
join the target cluster to hide with another one. As a result,
clustering methods return a unique cluster that conceals the
target cluster with another one.

Differently from previous studies that focused on fooling
image classifiers [33], [34] and malware classifier [34], we
target text document classifiers. Specifically, DARD intro-
duces a novel approach by utilizing adversarial settings not
for attacking models but as a defense mechanism against
adversaries relying on automated techniques to classify
exfiltrated repositories. This paradigm shift also alters the
threat model. Previous studies assumed adversaries would
carry out stealthy attacks and target a specific system,
typically knowing its parameters. However, in our work
as defenders, we cannot assume in advance the number of
clusters the attackers will seek or whether they will attempt
to circumvent the DARD system.

Deceptive repositories: Chakraborty et al. propose
Forge [35]. This system leverages ontologies to generate new
fake documents, credible to unauthorized readers, from a set
of original documents. The resulting deceptive repository
will contain fake and original documents that are indis-
tinguishable to unauthorized readers. Identifying the fake
documents within the repository requires extensive reading
and thus a significant investment of time to differentiate
them from the original ones. WE-Forge [36], an extension
of Forge, goes beyond ontologies and utilizes word embed-
dings to automatically generate fake documents that closely
resemble authentic ones, enhancing the credibility of the
forged documents. While Forge and similar systems focus
on building a deceptive repository to mislead the human
reader, we aim to generate a deceptive repository to deceive
automatic systems.

7 CONCLUSION

In this work, we proposed DARD, a framework of 4 decep-
tive operations able to manipulate the resulting clusters of
a repository of documents, to deceive the adversaries that
use automatic approaches to classify exfiltrated documents.
To this end, the deceptive operations replace some of the
original keywords in the documents with deceptive key-
words through term-replacement operations. We outlined
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how to apply the term-replacement operations for each
deceptive operation and analyzed the minimum number of
terms needed to be replaced. Then, we investigate different
criteria for selecting the terms to be replaced, highlighting
the pros and cons of the different approaches. We show ex-
perimentally that our operations can achieve a high level of
deception. We conduct our experiments with three different
types of adversaries: the Black Box, an adversary who does
not know anything about deceptive operations; the Gray
Box, that knows how deceptive operations work; and the
Enhanced Gray Box, an adversary that can leverage the Or-
acle Function to discover the potential deceptive keywords
in the repository. Our results show that deceptive operations
completely deceive adversaries without knowledge of this
work (0% ARI). They are very effective (average ARI of
25%) against those adversaries who know how the decep-
tive operations work (Gray Box), achieving, in the worst-
case scenario with the Enhanced Gray Box adversaries, an
average ARI of 53.5%. In addition, we analyzed the impact
of deceptive operations in the topic modeling task. We
found that when the adversaries perform topic modeling
with LDA on the deceptive repositories, LDA describes
the topics using only deceptive keywords when only 10
keywords for topics are requested. Moreover, we show that
our approach against topic modeling successfully deceives
also commercial tools such as Amazon Comprehend.

REFERENCES

[1] Deloitte. (2021) Impact of covid-
19 on cybersecurity. [Online]. Available:
https://www2.deloitte.com/ch/en/pages/risk/articles/impact-
covid-cybersecurity.html

[2] Interpol. (2021) Covid-19 cyberthreats. [Online]. Avail-
able: https://www.interpol.int/Crimes/Cybercrime/COVID-19-
cyberthreats

[3] J. Tidy, “The three russian cyber-attacks the west most fears,”
https://www.bbc.com/news/technology-60841924.

[4] CISA, “Impacket and exfiltration tool used to steal sensi-
tive information from defense industrial base organization,”
https://www.cisa.gov/uscert/ncas/alerts/aa22-277a.

[5] S. AG. (Oct. 2020) Software ag adhoc: Disruption of
services due to malware attack. [Online]. Available:
https://www.softwareag.com/en_corporate/company/news
/2020/1005_malware_attack.html

[6] T. Group. (May 2020) Toll it systems update. [Online]. Available:
https://www.tollgroup.com/toll-it-systems-updates

[7] Verizon. (2021) Dbir - 2021 data
breach investigations report. [Online]. Available:
https://www.verizon.com/business/resources/reports/dbir/

[8] Wikipedia. (2020) 2020 united states federal government
data breach. [Online]. Available: https://en.wikipedia.org/wiki/
+2020_United_States_federal_government_data_breach

[9] Intel, “Intel software guard extensions,”
https://www.intel.com/content/www/us/en/developer/tools
/softwareguardextensions/overview.html.

[10] Amazon, “Topic modeling,” 2021. [Online]. Available:
https://docs.aws.amazon.com/comprehend/latest/dg/topic-
modeling.html

[11] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of docu-
ment clustering techniques,” 2000.
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